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Abstract

Metric for Software Unit Testing (MSUT) is a new approach to testing and detecting logical and semantic errors in computer programs, with

the purpose of meeting software requirements. MSUT compares the speci�cation in the software design and the prototype implementation,

with the application of summations on symbols, coded sentences and data such as variables, data types, operands, operators, assignments,

parameter passes and others to check for errors. The results can contribute to the code structural testing stage in the software development

process. The tests shown indicate that the metric has great potential for automated software testing and suggests continuity for further

research as well as the development of speci�c tools for this area.

Keywords: Software Unit Testing, Structural Testing, White Box Testing, Software Metrics

Introduction
Software testing activities, especially structural and unit testing, seek to ensure software quality through source code analysis (Delamaro,

Jino and Maldonado 2016). According to Pressman and Maxim (2016), software quality is inherent to the requirement of functional

requirements, explicitly described speci�cations and established performance.

A pertinent reason for applying software unit testing is indicated in Howden (2011), which observes that in the code implementation process,

semantic and logical errors most often occur unintentionally, despite the use of consistent methods, support tools for syntax and semantic

debugging and trained professionals.

A semantic error is understood as a problem of meaning, which occurs even when a sentence is syntactically correct, but with some change in

operands and/or operators causing an unsatisfactory result, which cannot be identi�ed by a parser analysis. A logical error occurs when the

code is correct in terms of syntax, but inadequate in its algorithmic construction, which can result in an implementation that does not meet

the functional requirements and, after execution, does not generate the expected result.

Semantic and logical errors can be dealt with through software unit testing, which is used in the structural analysis of small blocks of code

capable of receiving inputs and generating outputs after processing.

As mentioned in Pressman (2016), a recommended process for testability is software metrics when they seek to understand the independent

paths exercised with data, the logical decisions of conditional structures, the cycles in their operational limits and the internal data

structures.
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Therefore, this work adopts the “error-based” principle of Endres (1975), which uses information about the types of failures, including those

of semantics and logic. And the metrics for testing Cyclomatic Complexity and linearly independent paths in McCabe (1976), Control Flow

Graph (CFG) and Data Flow Graph (DFG) in Rapps and Weyuker (1982) are considered.

The number of independent paths is calculated by cyclomatic complexity, based on the logical predicates of the algorithm and the CFG, and

used in the DFG according to the processes in computational and predicate uses, that is, from the de�nition of variables to the e�ective uses.

These techniques are described in the literature in isolation without complementation, however, in this paper the purpose is to improve the

search for errors in programs with the integration between them and the inclusion of a metric for detecting errors, in an adaptation to the

work of Andrade (2020).

To detect errors, the paths are searched for syntactic changes in the meaning of the code or erroneous logical constructions, with the

application of an oracle and “trace table”, for comparison between the output and the expected result, between the project program and the

implemented program.

Therefore, the objective of the present paper is to introduce a metric for software unit testing, which seeks to: a) carry out tests on smaller

units considering the de�nition and use of variables; and, b) identi�cation of �aws in the code structure, location of semantic, logical and

algorithmic construction errors to validate the implementation of a program unit in accordance with the software project.

Methodology
The methodological task begins with the calculation of cyclomatic complexity to determine the number of independent paths by the

equivalence equation , where  is the number of logical predicates of the algorithm, is the number of edges, and  the number

of CFG nodes (McCabe 1976).

p+1 = e–n+2 p e n

An independent path is a sequence of nodes ( ), with , with a complete path containing  at the input and  as the output.

The graph nodes cannot be visited more than once with the exception of repetitions and are quanti�ed by calculating the cyclomatic

complexity.

n1, n2, ..., nk k ≥ 2 n1 nk

The CFG becomes DFG to indicate the de�nitions of variables (def), the computational use (c-use) – in operations, and the predicate use (p-

use) – in logical propositions, considering All-De�nitions and All-Uses of data (def-use), according to Rapps and Weyuker (1982). The def-use

criterion for the variable  corresponds to a pair of nodes in the graph ( ), so that  is in def( ). The de�nition of  in  reaches  and  is

used in ( ). Thus, the value assigned to  in  is used in , computational (def→c-use) or predicate (def→p-use).

x n, m x n x n m x

m x n m

De�nition (def) occurs when a variable receives a value assigned in the �rst occurrence and in subsequent occurrences when the value

changes, for example for var: ; ...  . Computational use (c-use) occurs when the variable is used in a process, such as

assignment to variable, arithmetic operation, output for printing and sending parameters, for example for var: . Predicate use (p-

use), in propositions where the boolean function , that is, when the variable is used in a logical condition, for example for

var: 

int var = 0 var = m + 1;

m = var + 1;

p: x → {true, false}

if (var != 0) {...}.
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On the path to be tested, the Trace Table (TT) with Test Case (TC) is applied to �nd semantic errors with the exchange of operands and/or

operators through the general result of equation 1, which is determined by def→c-use with equation 2, def→p-use with equation 3 and

input/output variables with equation 4.

When semantic errors are not due to syntactic exchange of symbols, variables or data, but due to erroneous algorithmic construction in

disregard of functional requirements and cause unexpected output after execution, another CT is applied to TT and equation 5. If the error is

not found, the calculation is returned with a new TC, TT and calculations with equations 1 – 5, repeating the previous steps.

2.1 Justi�cation for applying the metric

MSUT is calculated by the sums of grammatical symbols in the code and by the evolution of data into variables using the hexa-decimal

system of numbers and characters of ASCII (2025), in the def→c-use and def→p-use structures and by comparing the data of inputs,

outputs and those expected after execution, as shown in equations 1 - 5.

The technique adapts to the Signature of the Structural Test (SST) method proposed by Andrade (2020), as there was a need to use an oracle,

that is, an ideal project program considered correct to serve as a comparison with the implementation of the prototype, in the same test case

or in di�erent test cases.

Modi�cations were made to equation 4 to include the input data in the processing and enable comparisons between the received and output

values, between the project codes and the implemented one. And, the inclusion of equation 5 to check errors in the algorithmic construction

when there are no syntactic changes in the code.

2.2 Equations 1-5 for MSUT

The MSUT formulations are:

 is the result of the MSUT metric with equations 2, 3, 4.Equation 1:

Eq. (1)

 = Number of computational uses (def→c-use) in the path for all processing in the executable lines.N

 =  computational use command in the path.i i-th

 M(c-use) - is a metric that identi�es semantic or logical errors related to computational use (def→c-use).Equation 2:

Eq. (2)
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 = Number of variables in an executable line.M

 =  variable used in processing in an executable line.wj j-th

O = Number of operators, commands, function, data type in an executable line.

 =  arithmetic/relational/logical operator, assignment, function, data type, print command in an executable line.dl l-th

 = Number of constants in an executable line.P

 =  constant in an executable line.ck k-th

 = Indexes ranging from  to .i, j, l, k 1 n

: M(p-use) - Metric that evaluates semantic or logical errors in structures with logical predicates (def→p-use).Equation 3

Eq. (3)

 = Number of logical predicates (p-use) in selection/repetition structures in the path.K

 selection/repetition (p-use) structure in the path.x = x-th

 = Number of conjunction, disjunction or negation operators in propositions in a logical sentence structure.R

 operator of conjunction, disjunction or negation in a logical proposition.om = m-th

 = Number of simple logical propositions in a logical sentence structure.S

 simple logical proposition in an executable line.f = f-th

 = Operands of the simple logical proposition in an executable line.a, b

 = Relational operator in a structure with a logical sentence.q

 = Result of the simple logical proposition.r

 = Result of the compound logical proposition.z



MSUT

 = Indexes ranging from 1 to n.x, m, f

 V(Var): Metric that evaluates the e�ective output of the program based on the inputs provided.Equation 4:

Eq. (4)

 = Amount of data at the program entry, at the beginning of the path.T

et = t-th value of the data in the input or received parameters.

 = Number of variables after the program ends, at the end of the path.U

 value of the variables after the program ends.vg = g-th

 = Number of output or return variables after executing the program.V

 output value or return of variables after executing the program.sh = h-th

 = Indexes ranging from 1 to n.t, g, h

 V(errorLogic): Applies when the semantic/logical error was not detected with equations 1 - 4 and does not occur due to the use of

operators, operands, commands and identi�ers exchanged or di�erent between programs  and . Or, in the suspicion of a discrepancy

between the expected value and the e�ective output value of the program. The sum of identi�er symbols, operands and operators, per line, is

justi�ed to determine whether programs  and  are exactly the same and do not present any syntactical di�erences.

Equation 5:

O P

O P

Eq. (5)

 = Number of characters of operands, operators, data types, functions in an executable line.X

 character of operands, operators, identi�ers, data types or functions in an executable line.operatort = t-th

 = Number of input variables for program execution, at the beginning of the path.Y

 entry value for executing the program.entryf = f-th
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 = Number of data in expected values ​​after executing the program.Z

 expected value after executing the program.resultg = g-th

Q = Number of output variables after executing the program.

 exit value after executing the program.exith = h-th

 = Indexes ranging from 1 to .t, f, g, h n

For all equations: 1) If there are no values ​​in the corresponding parameters in the program code, the value must be equal to zero; 2) To avoid

confusion between the negative sign of a number and the subtraction operator, all numbers are computed as non-negative real numbers, that

is, R+ = {x ∈ R | x ≥ 0}; 3) In homogeneous and heterogeneous data structures, each memory position or variable is considered as a sum

portion; 4) For arithmetic, relational, logical, connective and assignment operators, including if concatenated, the characters in hexadecimal

from the table in ASCII (2025) are added; 5) For data types, functions/methods for receiving and returning parameters in characters,

identi�ers, values ​​of derived variables, strings or object instantiation, the characters of the name are added in hexadecimal; 6) For decimal

values ​​with �oating point, the hexadecimal numbers are added as characters using the ASCII (2025).

2.3 Procedure �owchart for MSUT

The procedures for calculating the metric are in  and described below:Figure 1

Figure 1. Flowchart with procedures for MSUT. 
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1. Specify program algorithm  and validate at design time;O

2. De�ne TC for the longest independent path or the path with suspected errors;

3. Make the DFG for , and indicate in each node the def-use, (c-use - computational – equation 2) and/or (p-use – logical predicate –

equation 3);

O

4. Implement the  program in an IDE with a compiled or interpreted formal language;P

5. Make TT in  and  with TC de�ned to check the expected output according to the code input;O P

6. Calculate MSUT (equations 1 - 4) for programs  and , for simple comparison;O P

7. Check MSUT results. If they are the same,  is correct and go to procedure 10, if di�erent, go to 8;P

8. Change the TC or range of data or types and ranges used. Apply TT and equations 1 – 4 and go to 9.



MSUT

9. If the result of the MSUT’s is di�erent from what was expected, go back to 8 and apply a new TC with the programs  and  in equation 5,

check if  and  have syntactically the same codes. Being equal, compare the expected result and the output after executing  to detect the

error. If di�erent, assign a new TC and check the logical construction of program . Repeat the action until you obtain the same MSUT results

for and , equations 1 – 5.

O P

O  P P

O

O P

Results
Based on the methodology presented, two programs were used for testing with MSUT. These algorithms were chosen for their simplicity and

ease of application of the metric.

The results of testing these programs are presented below, each with versions of program  (design) and program  (implementation), with

test cases.

O P

The �rst is a program that counts even numbers in a collection. Version  for testing contains a syntactical error on line 4 with the use of the

relational operator , which should be . The second algorithm performs the exponential value calculation, where the respective

 and  programs present a logical construction error that allows correct execution for positive numbers and incorrect execution for negative

numbers.

P

(2 <= 0) (2 == 0)

O P

3.1 Application of Equations 1 - 4

The �rst algorithm receives as parameters a vector and its size, shown in  for program . Each node of the graph in 

contains the notation for  for equation 2 and/or  for equation 3.

Figure 2A O Figure 2B

def→c-use def→p-use

The cyclomatic complexity calculation resulted in 3 independent paths and the longest one (1,2,3,4,5,3,6) was chosen for testing.

Figure 2. (A) Algorithm and (B) DFG of Program .  O

The metric is demonstrated in and  when executing programs  and , where the calculations per line are shown.Table 1A  Table 1B O P
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Each line represents a DFG node executed by TC-1  and displayed by TT with variable data, the applied equation, the

MSUT calculation in hexadecimal and the results for  (eq. 2) and  (eq. 3). For the calculation of V(var) applied by equation 4, the

values ​​considered were in the return of the function, at the end of the execution scope.

(arr=[3,4,5] and size=3)

c-use p-use

Table 1. Application of equations 1 – 4. A) Program  and B) Program . O P

The output after executing the programs is shown on line 6 with the returned value and the values ​​of the variables at the end of the scope

after execution.

The Program  was implemented with a semantic error on line 4 . Both do not produce errors in the output after execution,

because for TC-1 , the value returned was 1, which corresponds to the number of pairs in the numeric collection of the

input (  and ).

P (arr[i] % 2 <= 0)

(arr=[3,4,5] and size=3)

Table 1A Table 1B
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Although this return value is the same, it is observed that the results of the MSUT calculations for  and  are di�erent in line 4, presenting a

result of  for  and  for . Which totals di�erent MSUT (  for  and  for ). This di�erence indicates that 

 , in the logical predicate, which was clearly detected through equation 3 - M(p-use).

O P

171 O 16E P 13E1 O 1495 P program P presents a

semantic error in line 4

For simple validation with the MSUT metric in program P, other test cases were executed, TC-2  and TC-3 

, with the same semantic error in line 4, in .

(arr=[6,7,9] and size=3) (arr=[7,9,10]

and size=3) (arr[i] % 2 <= 0)

The output results of  were the same as those of program , with a  of 1. In other words, in these tests, if MSUT were not

applied to programs  and , they would have identical output results, even with a semantic error in line 4, which could confuse the user that

the code was correct. However, Program  contains an error in line 4 and may present incorrect output depending on the input data and this

error was detected.

P O return count

O P

P

3.2 Application of Equation 5

The second program, in ,  and  do not present a syntax error or change of operators or operands, but they have algorithmic

construction �aws due to disregard for functional requirements, which do not allow the correct calculation of power with exponents of

negative integers and always returns 1.

Figure 3 O P

Figure 3. Use of equation 5, (A) Program  and (B) GFD. O

In this algorithm, the comparison with the expected results and the output results between the design speci�cation (program ) and the

implemented program  is fundamental for detecting failure in the code execution.

O

P

Table 2. Application of equation 5 to Programs  and . O P
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In this situation with the same code in  and , but both containing a logical error, the application with di�erent equations 1 - 4 and TC may

result in outputs with the same values, confusing the tester. For example, the entries:  and - .

O P

base= 3, exponent= 3 base= 3, exponent= 3

For this reason, equation 5 is applied to �nd out whether the writing of the  and  codes are the same, to check whether the program output

is the same as the expected output, and whether there is a logical error in the writing of the program .

O P

O

By applying equation 5, shown in  and , with TC-4  and TC-5 , it is observed

that the program codes for exponential calculation did not present syntactic errors between Program  and Program .

Table 2A Table 2B (base= 5, exponent= 2) (base= 5, exponent= -2)

O P

The results of the calculation of the parameter  are equivalent in all lines of the code for  and , with TC-4 and TC-5, showing that

the codes are the same and present the same result in the 6 lines (E78; 3CA; 626; 2E2; 16B; 310 – in hexadecimal).

operator O P

For the parameter added to the parameter , the result is di�erent (  and  with TC-4 is  and  and  with TC-5 is ),

which is expected because these are test cases with di�erent inputs and, in themselves, do not indicate errors.

operator entry O P E7F O P E7B

However, it is observed that, for  and , with TC-4, the expected parameter  was  and the output after execution was also . And

with CT-5, the expected parameter  would be  , but the e�ective output was . In other words, it was detected that

the codes contain an algorithmic error and do not work fully, as for any negative exponent the output will always be .

O P result 25 25

result 0.04 (0+0+4 in hexa) 1

1

In this case, the comparison is not made between Programs  and , but between the expected results and the actual outputs of  and ,

with di�erent test cases.

O P O P

The MSUT calculation demonstrates that the codes do not contain syntax or semantic errors, but present di�erent results, indicating a logical

error due to non-compliance with functional requirements. Because, for test cases with positive values, the output will be equal to the

expected result. However, in test cases with negative values ​​the output will be incorrect, di�erent from the expected result.

This situation would not be detected using equations 1 - 4 because programs  and  do not present code changes. However, equation 5

demonstrates the equality or di�erence between algorithms  and  and between the expected result and the e�ective output.

O P

O P
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Discussion
It is observed that the method with equations 1 – 4 makes it possible to detect errors, both in the general calculation of the metric and in the

intermediate portions, whether , , or, in the output of results when comparing the program documented in the project with the

implemented coding.

c-use p-use

Furthermore, this metric allows for a more accurate indication of the location of semantic and logical errors in the code, compared to

cyclomatic complexity, independent paths, or data �ow techniques. This reduces the need to manually check the uses of variables in 

for each variable and in all DFG paths, in addition to avoiding the use of mutants derived from the O program for comparison, since errors are

detected directly in the output of the code with the equations presented.

def-use

Using equation 5, an error was shown in the output after executing the code and a semantic failure was detected due to algorithmic

construction by comparing the expected result and the program output.

In this case, the problem was not in the syntax or data exchange. The program was tested with the TC-5 test case and every time the input

was a negative exponent it always returned 1, indicating that it did not operate correctly with negative numbers, however, for every positive

exponent the program worked correctly. Therefore, the inclusion of equation 5 in the MSUT was essential to compare the expected result with

the generated output and indicate the existing algorithmic �aw.

Conclusion
The MSUT proved capable of identifying di�erent types of semantic and logical errors in programs. In the case of the �rst example, the metric

detected a speci�c problem in the improper exchange of a relational operator, while in the second example with the exponential calculation

the error arose when comparing the output obtained with the expected result. MSUT allowed a detailed analysis of variables and �ows,

helping to identify problems that could otherwise go unnoticed.

The MSUT demonstrated to be a possible metric for detecting software failures, especially to supplement unit tests with cyclomatic

complexity, independent paths and data �ow graph techniques. And possibly avoid using mutants.

The metric helps to ensure that the code is speci�ed in accordance with the requirements and that the results present satisfactory quality. In

addition to the possibility of automated software testing tools, it suggests continuity for further research in this area.
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